Sample Name: Hydroxy Terminated Poly(AzoMA)

(AZoMA=11-[4-(4-butylphenylazo)phenoxy]-undecyl methacrylate)

Sample #: P9565-AZOMAOH

Structure:

$$HO-CH2-C \longrightarrow C \longrightarrow CH_2-C \longrightarrow CH_2-C \longrightarrow CH_3 \longrightarrow CH_3$$

$$C=O \longrightarrow CH_2$$

$$C \longrightarrow CH_3 \longrightarrow CH_3$$

$$C=O \longrightarrow CH_3$$

$$C \longrightarrow CH_3 \longrightarrow CH_3$$

$$C \longrightarrow CH_3$$

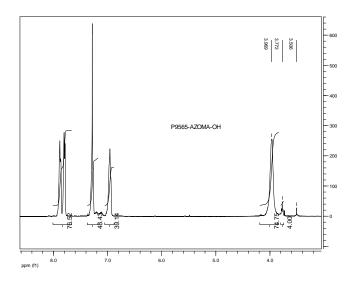
Composition:

Mn × 10 ³	PDI
17.0	1.13

Synthesis Procedure:

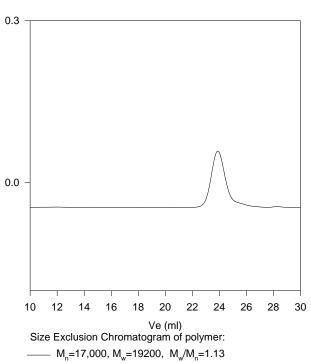
Hydroxyl terminated poly(11-[4-(4-butylphenylazo) phenoxy]-undecyl methacrylate) was prepared by living anionic polymerization using a hydroxyl protected initiator. The scheme of the reaction is illustrated below:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_{5} \\ C = C \\ C \end{array} \end{array} \\ \begin{array}{c} CH_{5} \\ C = C \end{array} \\ \begin{array}{c} CH_{5} \\ C = C \end{array} \\ \begin{array}{c} CH_{5} \\ CH_{5} \end{array} \\ \begin{array}$$


Characterization:

The molecular weight and polydispersity index (PDI) are obtained by size exclusion chromatography (SEC) in THF. SEC analysis was performed on a Varian liquid chromatograph equipped with refractive and UV light scattering detectors. Three SEC columns from Supelco (G6000-4000-2000 HXL) were used with triple detectors from Viscotek Co.

Solubility:


Polymer is soluble in DMF, THF, toluene and CHCl₃. It precipitates from methanol, ethanol, water and hexanes

HNMR of the sample:

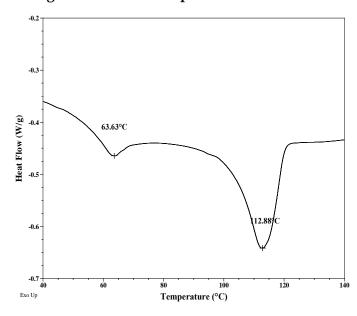
SEC of Sample:

P9565-AZOMAOH

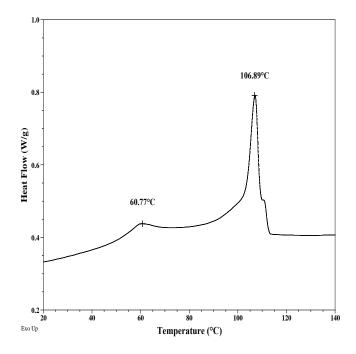
(OH functionality by titration: >98%)

Thermal analysis of the P9565- AzoMAOH

Thermal analysis of the samples was carried out on a TA Q100 differential scanning calorimeter at a heating rate of 10° C/min.The midpoint of the slope change of the heat flow plot of the second heating scan was considered as the glass transition temperature (T_g).


Melting and crystallization curve for the sample

The melting temperature (T_m) was taken as the maximum of the endothermic peak where as the crystallization temperature (T_c) was considered as the minimum of the exothermic peak.


Thermal analysis results at a glance:

T _{m1} (°C)	T _{c1} (°C)	T _{m2} (°C)	T _{c2} (°C)
64	61	113	107

Melting curves for the sample:

Crystallization curves for the polymer:

