Sample Name:

Poly(propylene carbonate)-b-poly(styrene)-b-poly(propylene carbonate)

Sample#: P43060C-PPCSPPC

Structure:

Composition:

Mn x 10 ³ PPC-S-PPC	PDI
7.0-10.0-7.0	1.10

Thermal properties:

Tg for PPC block	Tg for PS block
34 °C	91 °C

Synthesis Procedure:

The following reaction scheme shows how the product was prepared:

Purification:

The polymer was purified to remove homopolycarbonate fraction generated by Ionic polymerization of Propylene oxide by the following catalyst:(R,R)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) chloride used in the synthesis:

Product was purified to remove:

- 1. Hompolystyrene if any
- 2. Homopoly propylene carbonate
 Using solvent /non solvent mixture and the
 purification followed by SEC profile.

Characterization:

Polymer analyzed by size exclusion chromatography (SEC) and ¹H-NMR data analysis.

Thermal analysis

Thermal analysis of the samples was carried out on a TA Q100 differential scanning calorimeter under a nitrogen atmosphere at a heating rate of 10 oC/min.

Solubility:

The polymer is soluble in THF, toluene, and CHCl₃.

¹H-NMR Spectrum of the product:

SEC elugram of the polymer S2OH:

SEC elugram of the polymer:

DSC thermogram of the polymer:

The glass transition temperature (Tg) for PPC and PS blocks were obtained from the second heating scan at a rate of 10 °C/min.

* Lowering Tg of PS is related to certain miscibility between PPC and PS blocks.