Sample Name:

Poly(propylene carbonate)-b-poly(styrene)-b-poly(propylene carbonate)

Sample#: P43063-PPCSPPC

Structure:

Composition:

Composition.	
Mn x 10 ³ PPC-S-PPC	PDI
8.5-10.0-8.5	1.25

Thermal properties:

- moralist properties	
Tg for PPC block	Tg for PS block
35 °C	84 °C

Synthesis Procedure:

The following reaction scheme shows how the product was prepared:

Purification:

The polymer was purified to remove homopolycarbonate fraction generated by Ionic polymerization of Propylene oxide by the following catalyst:(R,R)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) chloride used in the synthesis:

Product was purified to remove:

- 1. Hompolystyrene if any
- 2. Homopoly propylene carbonate Using solvent /non solvent mixture and the purification followed by SEC profile.

Characterization:

Polymer analyzed by size exclusion chromatography (SEC), ¹H-NMR data analysis and DSC thermogram.

Thermal analysis

Thermal analysis of the samples was carried out on a TA Q100 differential scanning calorimeter under a nitrogen atmosphere at a heating rate of 10 °C/min.

Solubility:

The polymer is soluble in THF, toluene, and CHCl₃.

¹H-NMR Spectrum of the product:

SEC elugram of the PS2OH sample used:

SEC elugram of the sample:

<u>DSC thermogram of the polymer:</u> The glass transition temperature (Tg) for PPC and PS blocks were obtained from the second heating scan at a rate of 10 °C/min.

* Lowering Tg of PS is related to certain miscibility between PPC and PS blocks.